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Abstract. The effect of the electron-phonon interaction including the longitudinal optical phonons, the
four branches of interface optical phonons and the effect of spatial dependence effective mass have been
considered to investigate the bound polaron energy levels in finite parabolic quantum wells. A modified
variational method is adopted to obtain the dependence of the ground state and the binding energies of
bound polarons on the alloy composition x in finite GaAs/AlxGa1−xAs quantum wells. It is found from
the numerical result that there is an obvious contribution of the interaction between the electron and the
longitudinal optical phonons as well as interface phonons on the polaron energy levels. The electron-phonon
interaction should not be neglected to study the electron state problem in parabolic quantum wells.

PACS. 73.20.-r Electron states at surfaces and interfaces – 71.38.-k Polarons and electron-phonon
interactions – 63.20.Kr Phonon-electron and phonon-phonon interactions

1 Introduction

For a compositional parabolic quantum well (PQW), the
well material can be generated by alternate deposition
of thin undoped layers of GaAs and AlxGa1−xAs with
fixed composition x and varying layer thickness [1–5]. The
relative thickness of the GaAs layers decrease quadrati-
cally with distance from the well centers while that of the
AlxGa1−xAs layers increase. It can be, for this kind of
PQWs, approximated in theory by continuously changing
the alloy composition x from the well center (x = 0) to
the well edge (x = 0.32).

In recent years, the properties of the electron (or hole)
state in the PQW were studied in experimental and the-
oretical works. Some authors [6–9] studied the electronic
state in the PQW by using different methods to derive
the energy levels. Other authors [10–16] adopted the one-
and two-parameter variational methods, respectively, to
calculate the binding energy and the transition energy
of hydrogenic impurity states in the PQW. The exciton
energy levels in PQW structures have also been inves-
tigated in some works [17]. Unfortunately, the effect of
electron-phonon (e-p) interaction on the energy level has
not been included in the above theoretical works. It is well
known that the e-p interaction has a considerable effect
and can not be neglected in the study of electron states
in a square quantum well (SQW). Similarly, the effects of
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e-p interaction on the electronic states in a PQW should
be important.

The polaron effect of electrons coupled with longitu-
dinal optical (LO) phonon modes in infinite PQWs in
the presence or absence of a magnetic field has been
investigated by several groups [18–30]. The approxima-
tion of three dimensional (3D) bulk LO-phonon modes
and of infinite PQW used in their calculations needs
to be improved. More recently, Gerlach et al. [31] pre-
sented a variational study of the ground-state energy of
an exciton-(LO) phonon system in an infinite PQW. They
also used a simple Hamiltonian of the 3D bulk LO e-p in-
teraction to obtain the energy levels. The results with con-
sideration of phonon modes in all above theoretical works
surely are better than the results without consideration of
phonon modes. However, they did not consider the effects
of interface optical (IO) phonons and the spatially depen-
dent effective masses (SDEM) in the PQW. Therefore a
more detailed theoretical investigation of electron states
in the PQW is needed.

In this paper we study the effect of the e-p interac-
tion on the bound polaron energy levels in finite composi-
tional PQWs. The influences of LO-phonons and the four
branches of IO phonons between the material of well edge
and the barrier materials, and the effect of the SDEM
are all included. We have also considered the relation
between the frequency of LO-phonons and alloy compo-
sition x. The impurity-phonon coupling as well as the
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e-p coupling have been taken into account in the calcu-
lation. A modified Lee-Low-Pines (LLP)-like variational
method is adopted to deal with e-p interaction and to
obtain the ground state and the binding energies of the
bound polaron in a PQW. The numerical results for a
finite GaAs/AlxGa1−xAs PQW are given and discussed.

2 Theory

We consider a PQW structure with the well width of L =
2d, where the well material is in region λ = 1, |z| ≤ d, and
the barrier materials in region λ = 2, |z| > d. The well
material is generated by continuously changing the alloy
composition x from the well center (x = 0) to the well
edge (x = 0.32), and the barrier materials are AlAs. An
electron in the system is coupled to a Coulomb impurity
center (with a charge e) located at position Z0 interacting
with both LO and IO phonons. The Hamiltonian of the
system can be written as [32–34]

H = pz

(
pz

2mλ(z)

)
+
p2

x + p2
y

2mλ(z)
+ V (z) − e2

4πελ(z)r

+
∑
wλ

�ωLλa
+
wλawλ +

∑
qσp

�ωσpb
+
qσpbqσp +HI , (1)

where

V (z) =

{
V0z

2/d2 |z| ≤ d

V1 |z| > d,
(2)

with
V0 = 0.6 × 1250 x (x = 0.32), (3)

mλ(z) =

{
m1(z) |z| ≤ d

m2 |z| > d,
(4)

and

W =

{
(k,mπ/2d) |z| ≤ d

(k, kz) |z| > d.
(5)

Here ελ(z) is the high frequency dielectric constant in
region λ, a+

wλ and awλ are respectively the creation
and annihilation operators of the LO phonons with fre-
quency ωLλ, wave vector W. b+qσp(bqσp) is the correspond-
ing creation (annihilation) operator of the IO-phonons
with a 2D wave-vector q. k is a 2D-vector in the x-y plane.
The corresponding frequency ωσp labeled by σ(= +,−)
and parity p(= +,−) is dispersionless and is given by ref-
erences [33,34]. V1(= 750 meV) is the depth of the PQW,
m2 the effective-band mass of the electron in barrier ma-
terials AlAs, r =

√
ρ2 + (z − z0)2 is the distance between

the electron and the hydrogenic impurity center. Consid-
ering the effect of the SDEM, the effective band mass of
the electron in region 1 can be written [35] as

m1(z) = 0.0665 + 0.0835 x. (6)

The relation between the alloy composition x and the co-
ordinate z satisfies x = 0.32z2/d2. The last term in (1) is

the e-p interaction Hamiltonian and is given by

HI =
∑
wλ

{[
g∗wλ(z)e−ik·ρ − g∗wλ(z0)

]
a+
wλ + h.c.

}
+
∑
qσp

{[
g∗qσp(z)e−iq·ρ − g∗qσp(z0)

]
b+qσp + h.c.

} · (7)

Here factor g∗(z0) is related to the impurity coordinate Z0

in the growing direction of the well, and the Hamiltonian
does not have translational invariance in the Z-direction.
A simpler Hamiltonian has been used to discuss the bound
polarons in bulk materials [32]. Where a 3D plane-wave
factor e−ik·r instead of e−ik·ρ was used and the term re-
lated to the impurity center reduces to 1, since the 3D
translational symmetry is hold and the impurity center
can always treated to be at the coordinate origin, i.e. put
Z0 = 0. A Hamiltonian similar to equation (7) was also
used for the heterojunction problem [36].

The coupling function in equation (7) is determined by
following equation

g∗wλ(z) =

− i




�ωL1

(
�

2m1(z)ωL1

)1/4

× (4πα1/Sd)1/2 sin[mπ(z + d)/2d]

[k2 + (mπ/2d)2]1/2
, |z| ≤ d

�ωL2

(
�

2m2ωL2

)1/4

× (4πα2/SD)1/2 sin[kz(|z| − d)]

(k2 + k2
z)1/2

|z| > d.

(8)

Here m = 1, 3, 5... corresponds the even parity, m =
2, 4, 6... the odd parity, and m is limited by mπ/L ≤ π/a,
in which a is the lattice constant. αλ is the electron-LO-
phonon coupling parameter in region λ and

g∗qσp(z) = i
(

�e2

4qsε0ωσp

)1/2

×



[
ξ21 tanh(qd) + ξ22

]−1/2 cosh(qz)
cosh(qd)

, (p = +)

[
ξ21coth(qd) + ξ22

]−1/2 sinh(qz)
sinh(qd)

, (p = −)
(9)

for |z| ≤ d and

g∗qσp(z) = i
(

�e2

4qsε0ωσp

)1/2

×


[
ξ21 tanh(qd) + ξ22

]−1/2 e−q(|z|−d), (p = +)[
ξ21 coth(qd) + ξ22

]−1/2 e−q(|z|−d)θ(|z| − d) (p = −),
(10)

for |z| > d. D is the thickness of the barrier, S stands for
the interface area, ε0 is the vacuum dielectric constant.
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In equation (10),

ξ1 =
ελ − ε∞λ

ωTλ(εsλ−ε∞λ)
, ελ = ε∞λ

ω2
Lλ − ω2

σp

ω2
Tλ − ω2

σp

,

θ(|z| − d) =

{
+1, z > d

−1, z < d.
(11)

In equation (11), εsλ and ε∞λ are, respectively, the static
and the high-frequency dielectric constants and ωTλ is the
transverse optical phonon frequency in region λ.

To solve the Hamiltonian H in equation (1), we first
perform two unitary transformations with [37,38]

U1 = exp

[
−i

(∑
wλ

k · ρa+
wλawλ +

∑
qσp

q · ρb+qσpbqσp

)]

(12)
and

U2 = exp

{∑
wλ

[
fwλa

+
wλ − f∗

wλawλ

]

+
∑
qσp

[
hqσpb

+
qσp − h∗qσpbqσp

]}
, (13)

with fwλ, hqσp and their complex conjugate as variational
parameters, the transformed Hamiltonian is written as

H∗ = U−1
2 U−1

1 H U1U2. (14)

It is to be pointed out that in the bulk material case, a pre-
ceding canonical transformation U0 [32] was employed to
simplify the impurity-ion phonon interaction. As a result,
the e-p contribution changed the high-frequency dielectric
constant into the static one in the Coulomb potential, as
well infinite self-energy of a static point charge was added
to the Hamiltonian and dropped. Since the symmetry in
the Z-direction is broken, the preceding transformation
in reference [32] is invaluable to simplify the Hamiltonian
and has not been used here. Therefore the dielectric con-
stant in the Coulomb potential is kept unchanged and the
added infinite self-energy does not appear in H∗.

For the ground state of the bound polaron, the trial
wave function is chosen as the following form

ψ = Nϕ(z)φ(ρ)|0〉, (15)

with

φ(ρ) =
(

1
2π

)1/2

βe−βρ/2, (16)

where |0〉 is the zero-phonon state of the phonon field, β is
a variational parameter, N is the normalization constant.
The coordinate part of the wave function ϕ(z), can be
obtained by numerically solving the Schrodinger equation
with the following boundary condition at |z| = d

ψ− = ψ+,
1

mλ(z)−
dψ
dz

∣∣∣∣
−

=
1

mλ(z)+
dψ
dz

∣∣∣∣
+

, (17)

here ± indicates |z| → d ± 0±. Then the polaron energy
can be written as

E(L, β) = 〈ψ |H∗|ψ〉 · (18)

The ground state energy E1s can be obtained by numer-
ically solving equation (18) subject to the boundary con-
dition (17). The binding energy is given as

Eb = Ef − E1s, (19)

where Ef is the ground state energy of the free-polaron in
the system.

For comparison, we also calculated the energy levels of
the bound polaron in the SQW. The Hamiltonian of the
bound polaron in the SQW is taken from references [33,34]
and the calculation to obtain energy is similar to refer-
ence [39].

3 Numerical results and discussion

We have numerically calculated the energy levels of the
ground state of the bound polaron in GaAs/AlxGa1−xAs
PQWs by using equations (14–19). The parameters used
in the calculation are listed in Table 1, and the nu-
merical results are shown in Figures 1–3. The effective
phonon-mode approximation has been used to obtain the
LO and TO phonon modes of the ternary mixed crystal
AlxGa1−xAs [40,41]. The reference energy levels for the
electron are chosen at the bottom of the conductor-band.

Table 1. Parameters [40] used in the calculation.

Quantities GaAs AlxGa1−xAs AlAs

εs 13.18 10.06x + 13.18(1 − x) 10.06

ε∞ 10.89 8.16x + 10.89(1 − x) 8.16

mb(me) 0.0665 0.15x + 0.0665(1 − x) 0.15

a(nm) 0.5644 0.566x + 0.5644(1 − x) 0.566

�ωL (meV) 36.25 36.25 + 1.83x + 17.12x2 − 5.11x3 50.09

�ωT (meV) 33.29 33.29 + 10.7x + 0.03x2 + 0.86x3 44.88

Figure 1a shows the ground state energy E1s of the
bound polaron with and without the effect of the SDEM
in the PQW, and the results in the SQW, respectively,
as a function of the well width L. One sees that E1s de-
creases with increasing L rapidly at less L but slowly at
larger L, the results are qualitatively similar to the results
of the SQW, but the values in the PQW are larger than
that in the SQW. On the other hand, the curve with the
effect of the SDEM is lower than the curve without the ef-
fect of the SDEM since the effective band mass with the
effect of the SDEM is larger than that without the effect
of the SDEM. In the infinite harmonic oscillator limit for
a spatially constant effective mass, the energy is propor-
tional to mλ(z)−1/2 [8]. In order to understand the effects
of e-p interaction clearly, the contribution of the difference
branches of phonons and the summation of them to the
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Fig. 1. (a) The ground state energies of the bound polaron
as a function of well width L, in units of a. The solid line is
the result with the influence of phonons and the effects of the
SDEM, the dashed dotted line is the result with the influence
of phonons and without the effects of the SDEM, the dotted
line is the result without the influence of phonons and with
the effects of the SDEM in the finite PQW, the dashed line is
the result with the influence of phonons in the SQW; (b) the
contributions of phonons to the bound polaron energy-levels
in the finite PQW as a function of well width L, in units of a.
Dashed line is the curve of the barrier LO-phonons contribu-
tion, dashed dot line is the IO-phonons contributions, dotted
line is the confined LO-phonons contributions and the solid
line is the total contributions.

Fig. 2. (a) The ground state binding energies of the bound
polaron as a functions of the well width L, in units of a, with
the influence of phonons and the effect of the SDEM (solid
line), without the influence of phonons and with the effect of
the SDEM (dashed dot line), with the influence of phonons
and without the effect of the SDEM (dotted line) in the PQW,
with the influence of phonons (dashed line) in the SQW; (b) the
contributions of phonons to the binding energies in the PQW
as a functions of the well width L, in units of a. Dashed line
is the curve of the barrier LO-phonon contribution, dashed
dot line is the confined LO-phonon contribution, dotted line
is the IO-phonon contribution and the solid line is the total
contribution.
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Fig. 3. (a) The ground state binding energies of the bound
polaron as a functions of the impurity position z0, in units of L,
with the influence of phonons and the effect of the SDEM (solid
line), without the influence of phonons and with the effect of
the SDEM (dashed line), with the influence of phonons and
without the effect of the SDEM (dotted line) in the PQW for
the three given well widths (L are, respectively, 4a, 16a, and
90a); (b) the contributions of phonons to the binding energies
as a functions of the impurity position z0, in units of L, in
the PQW for given well width 16a. Dashed line is the barrier
LO-phonon contribution, dashed dot line is the confined LO-
phonon contribution, dotted line is the IO-phonon contribution
and the solid line is the total contribution.

ground state energy of the bound polaron in the PQW
as functions of L are shown in Figure 1b. It is found that
the contribution of the confined LO-phonon to the ground
state energy increases as increasing L, and finally closes to
the total contribution. But the contribution of the barrier
LO-phonon and the IO phonons decreases rapidly as in-
creasing L at first, and approaches zero at large L. As a re-
sult of superposition the total contribution decreases with
increasing L at first, and gets a minimum around 18a, then
increases slowly and at last approaches to the 3D-values of
bulk GaAs. There is a minimum in the total contribution
curve because we considered the impurity – IO and LO
phonon interaction as well as the electron – IO and LO
phonon interaction.

The binding energy Eb of the bound polaron as a func-
tion of the well width L is depicted in Figure 2a. It is
seen that Eb decreases rapidly with increasing L at first,
then decreases slowly, finally approaches the bulk values
in GaAs. For comparison, the results without the e-p influ-
ences and with the SDEM effect, without the SDEM effect
and with the e-p influences are respectively plotted in Fig-
ure 2a. Eb with the influence of phonons is smaller than
that without the influence of phonons. It also shows that
the phonon contributions to the binding energies are neg-
ative [36]. That the binding energies without the SDEM
effect is lower than that with the SDEM effect is qualita-
tively similar to the results of reference [16]. The contribu-
tions of the difference branches of phonons to the binding
energies are plotted in Figure 2b. It can be seen that the
IO phonons contribution is larger than that of the confined
LO phonons for less L, but the confined LO phonons con-
tribution is larger than that of IO phonons for larger L,
and the contribution of the barrier LO-phonons is very
small. The total negative contribution increases rapidly
with increasing L at first, then gets a maximum around
16a, finally decreases slowly. The total contribution of the
e-p interaction to the binding energies of the ground state
is obvious. The typical value is given about 9% at 16a.
Therefore, the e-p effects should be considered in discus-
sion the electronic states in a PQW. It can be found in
Figure 1a and Figure 2a that the energy shifts with and
without the SDEM effect decrease with increasing L (ex-
cept for L < 4a), finally decrease to zero. The reason is
that the probability of the electron locating the center of
the PQW increases with increasing L and then the effec-
tive band mass in the PQW tends to the value in GaAs.
Our result is qualitatively similar to the previous results
without influence of phonons [12,14,16], but there is a
quantitative difference.

Eb with the e-p interaction and without the e-p inter-
action as a function of the impurity position z0 in the three
given well widths (4a, 16a, 90a) is given in Figure 3a, along
with that without the effects of the SDEM and with the
influences of phonons. One can see that the Eb decreases
with increasing z0 in the all three cases, but the variation
of the binding energies with increasing the impurity posi-
tion is of a little difference. For example, in a narrower well
(L = 4a), Eb decreases slowly with increasing z0, whereas
it decreases rather quickly with increasing z0 in a larger
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well width (L = 90a). Figure 3b shows the contributions
of the difference branches of phonons to Eb as a function
of z0 in the given well width (16a). One can see that the
contributions of the e-p interaction to the binding energies
decrease with increasing z0 and the IO phonon contribu-
tion is largest while the barrier LO-phonon contribution
is least.

In conclusion, we have considered the effect of the elec-
tron – IO and LO phonon interaction and the SDEM effect
the on the bound polaron energy levels in a finite PQW.
A modified Lee-Low-Pines (LLP)-like method is adopted
to deal with the e-p interaction as well as the impurity.
The numerical results for finite GaAs/AlxGa1−xAs PQWs
are obtained and discussed. The result shows that there
is an obvious contribution from the IO-phonons as well
as LO-phonons on the energy levels. Thus, the electron-
phonon interaction should not be neglected in the study
of the electron state problem. One can also find that the
effect of the SDEM on the energy levels in a finite PQW
is obvious except for large (L → ∞). In addition, the LO
and IO phonons contributions to the binding energies are
negative and obvious.
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